PZN-PT Single Crystal

PZN-(4.75-6.5)%PT Single Crystal Products

PROPERTIES AT A GLANCE

Crystal type	011P-32A	011P-32S	011P-31T	011P-33T	001P-31T-110L	001P-33(31)T-100L
%PT (Norminal)	x ≈ 5.5%	x ≈ 6%	x ≈ 6%	x ≈ 6%	x ≈ 6.5%	x ≈ 6.5%
$\mathcal{E}_{_{33}}^{^{\!\!\!T}}\left(\mathcal{E}_{_{0}} ight)$	4000	5500	5500	5500	6100	6100
d _{ij} (pC/N)	-2600 (d ₃₂)	-3200 (d ₃₂)	1100 (d ₃₁)	1900 (d ₃₃)	-1200 (d ₃₁)	2400 (d ₃₃)/-1400 (d ₃₁)
E _c (kV/mm)	0.45	0.55	0.55	0.55	0.35	0.35
E _{RO/RT} (kV/mm)	0.85 (<i>E</i> _{RO})	0.70 (<i>E</i> _{RO})	0.70 (<i>E</i> _{RO})	0.70 (<i>E</i> _{RO})	0.90 (E _{RT})	0.90 (<i>E</i> _{RT})
$\sigma_{\scriptscriptstyle {RO/RT}}({\sf MPa})$	12 ($\sigma_{_{RO}}$)	8 ($\sigma_{_{RO}}$)	>85	5 (σ _{RO})	80 ($\sigma_{\rm \tiny RT}$)	5 ($\sigma_{_{RT}}$) / -
S (pm²/N)	170 (S ^E ₂₂)	180 (S ^E ₂₂)	54 (S ^E ₁₁)	12 (S ^D ₃₃)	40 (S ^E ₁₁)	16 (S ^D ₃₃)/90 (S ^E ₁₁)
<i>d / s</i> (C/m²)	15	18	20	158	30	$150(d_{33}/S_{33}^{D})/16(d_{31}/S_{11}^{E})$
k_{ij}	0.90 (k ₃₂)	0.91 (k ₃₂)	0.75 (k ₃₁)	0.90 (k ₃₃)	080 (k ₃₁)	0.90 (k ₃₃)/0.50(k ₃₃)
$\mathbf{v}_{\scriptscriptstyle \mathrm{ii}}\left(\mathrm{m/s} ight)$	850 (v ^E ₂₂)	800 (V ^E ₂₂)	1500 (v ^E ₁₁)	3250 (v ^D ₃₃)	1800 ($\mathbf{v}_{_{11}}^{_{E}}$)	2750 (v ^D ₃₃)/1200 (v ^E ₁₁)
T _{RO/RT} (°C)	108 (<i>T</i> _{RO})	102 (<i>T</i> _{RO})	102 (<i>T</i> _{RO})	102 (<i>T</i> _{RO})	100 (<i>T</i> _{RT})	100 (<i>T</i> _{RT})
Main Application	Underwater projectors (with pressure release)	Hydrophone	Sensors & actuators of large transverse force	Sensors & Actuators	Sensors & Actuators of large transverse force	Sensors & Actuators

PZN-PT Single Crystal

 $k_{_{33}}$ ≈ 0.90-0.93; $k_{_{32}}$ ≈ 0.89-0.92; $k_{_{15}}$ ≈ 0.92 $d_{_{33}}$ ≈ 1500-2500, $d_{_{32}}$ ≈ -(1800-3000), $d_{_{15}}$ ≈ 5000 (pC/N); K^T≈ 4000-6000 E_c ≈ 0.3-0.6 kV/mm; T_{DP}> 150°C; ΔT_c value; high flexibility.

PZT Piezoelectric Ceramic

k₃₃≈ 0.65-0.72; k₃₁≈ 0.5; d₃₃≈ 350-590, d₃₁< -275 (pC/N); K[™]≈ 1500-3500 E_c> 0.7 kV/mm; T_{DP}> 150°C; small ΔT_c value; low flexibility.

Microfine Materials Technologies Pte Ltd

Bukit Batok Crescent, #06-02, The Spire Singapore 658079 I : +65 6264 0112 Website : www.microfine-piezo.com Please contact us for other details.

FULL PROPERTY MATRICES OF $[011]_{\circ}$ poled rhombohedral PZN-(4.75-6.5)%PT single crystal.													
	Elastic stiffness constants: c_{ij}^{E} and c_{ij}^{D} (10 ¹⁰ N/m ²)						Piezoelectric constants: e_{ij} (C/m²), g_{ij} (10 ⁻³ Vm/N)						
РТ% 4.75	C ₁₁	C ₁₂	C ^E 13	C ₂₂	C ₂₃	C ₃₃	C ₄₄	C ₅₅	C ₆₆	e ₁₅	e ₂₄	e ₃₁	e ₃₂
4.75 5.5 6.5	6.36 6.77 7.14	3.45 4.25 4.59	1.76 2.35 2.64	7.42 8.55 8.39	8.99 9.75 10.26	14.05 14.12 16.08	6.81 6.47 6.65	0.36 0.34 0.30	0.79 0.64 0.59	14.24	9.13 13.39 8.05	4.66 4.72 6.35	-5.01 -4.65 -3.80
PT%	C ₁₁	C ^D ₁₂	C ^D ₁₃	C ^D ₂₂	C ₂₃	C ₃₃	C_{44}^{D}	C ^D 55	C ^D ₆₆	g ₁₅	g ₂₄		g ₃₂
4.75 5.5 6.5	6.72 7.20 7.66	3.07 3.82 4.28	2.77 3.53 3.90	7.83 8.97 8.58	7.91 8.59 9.51	16.89 17.33 19.14	7.19 7.21 7.18	2.09 1.64 1.95	0.79 0.64 0.59	4 55.63	5.82 7.67 9.11	7 24.23	-53.63 -56.05 -52.80
		Elas	tic comp	liance cor	nstants: <i>s</i> _{ij}	and s _{ij} (1	0 ⁻¹² N/m ²)	Piezoeleo	ctric constai	nts: <i>d</i> _{ij} (1	0 ⁻¹² C/N), h _{ij}	(10 ⁸ V/m)
PT%	S ^E ₁₁	S ^E ₁₂	s E ₁₃	S ^E ₂₂	S ^E ₂₃	S ^E 33	S ₄₄	S ^E 55	S ^E 66			d ₃₁ d ₃₂	d ₃₃
4.75 5.5 6.5	34.26 39.04 46.99	-47.45 -56.67 -74.01	26.05 32.65 39.51	125.35 137.40 170.69	-74.22 -85.47 -96.76	51.32 60.68 61.47	15.46	277.78 294.12 333.33	125.98 155.29 169.08	4187 2	207 8	750 -1852 858 -1985 91 -2618	1185 1319 1571
PT%	S ^D ₁₁	S ^D ₁₂	S ^D ₁₃	S ^D ₂₂	S ^D ₂₃	S ^D 33	S ^D 44	S ^D 55	S ^D ₆₆	h ₁₅	h ₂₄ r	n ₃₁ h ₃₂	h ₃₃
4.75 5.5 6.5	17.97 18.25 18.38	-7.23 -8.58 -11.13	0.31 0.70 1.78	26.03 26.14 32.46	-10.66 -11.55 -13.82	10.67 11.53 11.68	13.90 13.87 13.94	47.71 61.20 51.25	125.98 155.29 169.08	11.94 4 9.11 5 11.29 6	.19 7. 5.53 9	.62 -8.19 .14 -9.01 .14 -4.87	21.58 24.93 19.81
PT%	Dielectric constants: ε_{ij} (ε_0), β_{ij} (10 ⁻⁴ / ε_0)												
4.75	ε ^s 1375	ε 24		ε ₃₃ 691	ε ₁₁ 8000	ε ₂₂ 2600	ε ₃₃ 3900	$\frac{\beta_{11}^{s}}{7.27}$	$\frac{\beta_{22}^{s}}{4.06}$	$\frac{\beta_{33}^{s}}{14.47}$	$\frac{\beta_{11}^{\tau}}{1.2}$		$\frac{\beta_{33}^{\tau}}{2.56}$
5.5 6.5	1766 1462	273	37 5	583 381	8500 9500	3050 1500	4000 5600	5.66 6.84	3.65 7.19	17.15 11.35	1.1 1.0	8 3.28	2.50
	Elec	tromech	anical co	oupling fa	ctors: k _{ij}	Mechan	ical qual	ity factor	s Q _{ij} C	oercive field st	trength E _c (kV/mm), densi emperatures: 7	tyρ(kg/m³)
PT%	k ₁₅	k _24	k 31	k ₃₂ k	33 K	$Q_{_{ m B3}}$	Q) 	Q ₃₁	E _c	ρ	$T_{_{RO}}$	T_{c}
4.75 5.5 6.5	0.91 0.89 0.92	0.23 0.32	0.69 0 0.73 0	0.89 0.8 0.90 0.9 0.90 0.9	39 0.41 90 0.43	90-180 70-150 50-120	0 100-1 0 80-	200 100 170 80)-200 C).32-0.45).42-0.55).46-0.60	8390 8375 8370	116-129 103-116 95-103	145-157 152-164 156-170
FU	ULL PI	ROPE	RTY M	ATRIC	ES OF	[001] _c po	oled rh	ombohe	edral PZ	2N-(4.75-0	6.5)%P	'T single o	crystal.
					Elastic sti	ffness con	stants: c	$\frac{\mathcal{E}}{\mathbf{ij}}$ and $\mathbf{c}_{\mathbf{ij}}^{\mathcal{D}}$ ('	10 ¹⁰ N/m ²)	E			
PT%	C ^E			C ^E ₁₃	C_{33}^{E}	C _{44}^{E}	C_{66}^E	C ^D ₁₁	C ^D ₁₂	C ^D ₁₃	C ^D 33	C ^D ₄₄	C ^D 66
4.75 5.5 6.5	10.9 11.1 11.4	18 10.	35 10	0.30 1	10.61 10.83 10.91	6.71 6.70 6.54	7.46 5.75 5.04	11.24 11.40 11.50	10.35 10.57 10.71	9.01 9.42 9.92	13.96 14.45 14.75	6.93 6.98 6.84	7.46 5.75 5.04
					Elastic	complianc	e consta	nts: <i>s</i> ^E and	d s ^D _{ij} (10 ⁻¹²	N/m²)			
PT%				S ₁₃	S ^E 33	\$£ 44	\$E 66	\$ ^D 11	\$ ^D ₁₂	\$ ^D 13	\$ ^D 33	\$ ^D 44	\$ ^D ₆₆
4.75 5.5 6.5	77.2 85.6 94.5	2 -34.	16 - 4	8.93 1	81.95 02.28 125.54	14.90 14.93 15.29	13.40 17.40 19.84	61.59 65.06 69.00	-51.59 -54.72 -57.86	-6.47 -6.74 -7.51	15.57 15.71 16.96	14.42 14.34 14.62	13.40 17.40 19.84
Piezoelectric constants: e_{ij} (C/m²), d_{ij} (10 ⁻¹² C/N), g_{ij} (10 ⁻³ Vm/N) and h_{ij} (10 ⁸ V/m)													
PT%	0	0			d			545			11	h ₃₁	h ₃₃
PT%	e ₁₅ 5.84	e ₃₁ -4.2	ŝ	e ₃₃	d ₁₅ 87	d ₃₁ -767	d ₃₃ 1581	<i>S</i> ₁₅ 5,54	<i>S</i> ₃₁ -20.36	<i>g</i> ₃₃ 41,98	h ₁₅ 3.84		
PT% 4.75 5.5 6.5		-4.2 -3.8	3 1! 9 1!	e ₃₃ 5.30 5.92	87 100	0 ₃₁ -767 -979 1179	1581 2009 2430	5.54 5.94 6.16	-20.36 -21.00 -21.68	41.98 43.10 44.68	3.84 4.15 4.21	-6.06 -5.55 -3.80	21.90 22.70 22.99
4.75 5.5	5.84 6.70	-4.2 -3.8	3 1! 9 1! 6 10	e ₃₃ 5.30 5.92 6.71	87 100 109 -	-767 -979 1179	1581 2009 2430	5.54 5.94 6.16	-20.36 -21.00 -21.68	41.98 43.10 44.68	3.84 4.15 4.21	-6.06 -5.55	21.90 22.70
4.75 5.5 6.5 PT%	5.84 6.70 7.13 ε ^s ₁₁	-4.2 -3.8 -2.7 ε	3 1! 9 1! 6 10 Dielectr	e ₃₃ 5.30 5.92 6.71 ic constar ε ¹ 11	87 100 109 - nts ε_{ij} (ε_0), ε_{33}^{T}	-767 -979 1179 $\beta_{ij} (10^{-4}/s)$ β_{11}^{s}	$1581 \\ 2009 \\ 2430 \\ \varepsilon_0$ and e β_{33}^{s}	5.54 5.94 6.16 lectromed β_{11}^{T}	-20.36 -21.00 -21.68 thanical co β ₃₃ ^τ	41.98 43.10	3.84 4.15 <u>4.21</u> ors k _{ij} k ₃₁	-6.06 -5.55 -3.80 k ₃₃	21.90 22.70 22.99 <i>k</i> t
4.75 5.5 6.5	5.84 6.70 7.13 ε ₁₁	-4.2 -3.8 -2.7 ε 78 79	3 1! 9 1! 6 10 Dielectr 5 39 1 92 1	e_{33} 5.30 5.92 6.71 ic constar ϵ_{11}^{T} 773 900	87 100 <u>109</u> - nts ε _{ij} (ε _o),	-767 -979 <u>1179</u> β _{ij} (10 ⁻⁴ / -	1581 2009 2430 ε₀) and e	5.54 5.94 <u>6.16</u> lectromed	-20.36 -21.00 -21.68 hanical co	41.98 43.10 44.68 oupling fact	3.84 4.15 <u>4.21</u> ors k _{ij}	-6.06 -5.55	21.90 22.70 22.99

Mircofine reserves the right to change specifications without notice.

: 🗆

Microfine Materials Technologies Pte Ltd

Bukit Batok Crescent, #06-02, The Spire Singapore 658079 I : +65 6264 0112 Website : www.microfine-piezo.com Please contact us for other details.

DESCRIPTION AND ORIENTATION OF VARIOUS PZN-(5-7)%PT CRYSTAL TYPES AND THIER SYMBOLS

011P-32A / 011P-32S	[100](A) [0-11] [011](P)	[011]-poled transverse (32) mode crystal of [0-11] ¹ x [100] ^{2(A)} x [011] ^{3(P)} . Type A is recommended for Actuator and Type S for Sensor applications, notably as motor section of underwater projectors and sensing elements of hydrophones respectively.
011P-31T	[0-11](A) [100] [011](P)	[011]-poled transverse (31) mode crystal of $[0-11]^{1(A)} \times [100]^2 \times [011]^{3(P)}$ cut for transverse-mode transducers (31T) where high transverse loads are present.
011P-33T	[100] [0-11] [011](A,P)	[011]-poled longitudinal (33) mode crystal of $[0-11]^1 \times [100]^2 \times [011]^{3(A,P)}$ cut for longitudinal mode transducers (33T) when relatively high d ₃₃ and crystal stiffness are advantageous.
001P-31T-110T	[1-10] [001](P)	[001]-poled crystal of $[110]^{1(A)} \times [1-10]^2 \times [001]^{3(P)}$ cut as transverse-mode transducers (31T) where a high $d_{31}/s_{11}E$ value is advantageous.
001P-33T-100L	[100]	[001]-poled crystal of [100] ¹ x [010] ² x [001] ^{3(A,P)} cut as longitudinal mode transducer (33T). Said cut may also
001P-31T-100L	[100](A) [010] [001](P)	be used as transverse mode transducer (31T), i.e., $[100]^{1(A)} \times [010]^2 \times [001]^{3(P)}$.

* For other crystal compositions and cuts, please kindly contact us with your request.

Key on crystal designation / symbols:

- * 011P and 001P indicate poling direction being [011] and [001], respectively, which is also the 3-direction.
- * 33, 32 and 31 denote the mode of actuation/sensing, 33 being the longitudinal mode, and 32 and 31 are the transverse modes with the active direction being along the 2- and 1-axis.
- * A, S and T denote actuator, sensor and transducer, respectively.
- * 100L and 110L indicate the active length directions in [001]-poled crystals.
- * Superscripts (A) and (P) next to directional axes denote the active and poling direction respectively.

CRYSTAL DIMENSIONS AND TOLERANCES

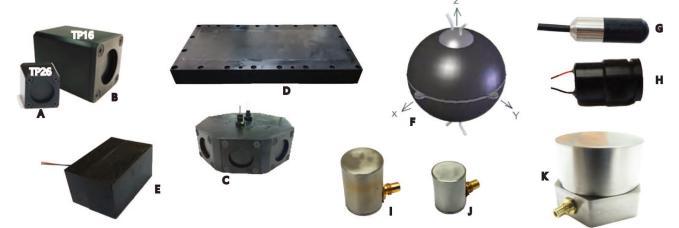
Direction	Dimensional Range	Tolerances (+/-)		
Thickness (i.e., poling direction) (mm)	0.3 - 3.0	0.015		
Other two orthogonal directions (mm)	2.0 -25.0	0.030		

Crystals can be supplied in either unpoled (either bare or electroded) or electroded and poled condition. Our standard electrode consists of a thin NiCr bond coat followed by a thicker AuPd electrode layer, both applied via the RF sputter-deposition technique. Crystals of smaller dimensions, larger thickness in poling direction and/or tighter tolerances are available upon request.

Mircofine reserves the right to change specifications without notice.

Microfine Materials Technologies Pte Ltd

10 Bukit Batok Crescent, #06-02, The Spire Singapore 658079 Tel : +65 6264 0112 Website : www.microfine-piezo.com Please contact us for other details.


The key performance and main application of PZN-(4.75-6.5)%PT single crystal

Poling Direction		<011>-poled		<001>-poled			
Property / Type	PZNT-A	PZNT-B	PZNT-C	PZNT-A	PZNT-B	PZNT-C	
Composition	PZN-(4.5%)PT	PZN-(5.5%)PT	PZN-(6.5%)PT	PZN-(4.5%)PT	PZN-(5.5%)PT	PZN-(6.5%)PT	
Density (g/cm ³)	8.39	8.375	8.37	8.39	8.375	8.37	
K_{3}^{T} (1kHz)	2800-4500	3800-5000	4800-6500	4000-5600	5000-6700	6000-7800	
tan δ (1kHz)	≤0.005	≤0.005	≤0.005	≤0.015	≤0.015	≤0.015	
T _c (°C)	145-157	152-164	156-170	145-157	152-164	156-170	
T _{RO} / T _{RT} (°C)	116-129 (T _{RO})	103-116 (T _{RO})	90-103 (T _{RO})	115-125 (Т _{кт})	105-115 (Т _{вт})	90-105 (T _{RT})	
k ₃₃	≥0.86	≥0.86	≥0.86	≥0.89	≥0.90	≥0.91	
k ₃₂	≥0.88	≥0.89	≥0.90				
k ₃₁	≥0.60	≥0.65	≥0.70	≥0.41	≥0.45	≥0.50	
d ₃₃ (pC/N)	900-1200	1100-1400	1500-1900	1380-2100	1900-2600	2400-3000	
d ₃₂ (pC/N)	(-) 1500-2000	(-) 1800-2450	(-) 2200-3200				
d ₃₁ (pC/N)	600-900	800-1100	900-1250	(-) 700-1100	(-) 800-1300	(-) 900-1500	
s_{33}^{D} (10 ⁻¹² m ² /N)	10-14	10-14	10-14	14-21	14-21	14-21	
s ₁₁ ^D (10 ⁻¹² m ² /N)	12-20	14-26	16-28	50-80	55-90	65-95	
s ₂₂ ^D (10 ⁻¹² m ² /N)	18-30	18-35	18-40				
s ₂₂ ^E (10 ⁻¹² m ² /N)	115-140	130-165	150-215				
s ₁₁ ^E (10 ⁻¹² m ² /N)	25-40	35-50	40-55	70-100	75-110	80-120	
s ₃₃ ^E (10 ⁻¹² m ² /N)	45-60	50-79	55-95	75-120	85-140	95-160	
E _c (kV/cm)	3.2-4.5	4.2-5.5	4.6-6.0	2.5-3.5	3.0-4.0	3.0-4.0	
Q _M (33-mode)	90-180	70-150	50-120	60-100	60-100	60-100	
Q _M (32-mode)	100-200	80-170	60-150				
Q _M (31-mode)	100-200	80-180	50-150	40-100	40-100	40-100	

Application: PZN-(4.75%)PT Suitable for various sensors, actuators and underwater devices that require high temperature stability.

PZN-(5.5%)PT Suitable for all kinds of high-performance, broadband, resonant actuators and underwater transducer.

PZN-(6.5%)PT Suitable for all kinds of high-sensitivity sensors and hydrophones.

A,B,C,D : compact size, low frequency, wide broadband projector; E: high frequency, broadband underwater transducer; F: compact size, high sensitivity vector sensors; G, H: hydrophone; IJK ultra-high sensitivity, accelerometer.

Mircofine reserves the right to change specifications without notice.

Microfine Materials Technologies Pte Ltd 10 Bukit Batok Crescent, #06-02, The Spire Singapore 658079 Tel : +65 6264 0112 Website : www.microfine-piezo.com Please contact us for other details.